
JÜRGEN SCHEELE2,3,4, FAIZ NIAZI2, JOACHIM DREVS5, KLAUS DIERGARTEN2 and PAPA TOURE1

1Institut de Cancerologie, CHU Le Dantec, BP5126, Dakar, Senegal; 2Auron Healthcare GmbH, Merzhauser Strasse 183, D-79100 Freiburg; 3Department of Pharmacology I, Albertsrasse 25, D-79106 Freiburg; 4Department of Medicine I, Hugstetterstr. 55, D-79106 Freiburg; 5Tumorklinik Sanafontis, Alpine GmbH, An den Heilquellen 2, D-79111 Freiburg, Germany

Received March 17, 2009; Accepted May 15, 2009

DOI: 10.3892/or_00000512

Correspondence to: Dr J. Scheele, Auron Healthcare GmbH, Merzhauser Strasse 183, D-79100 Freiburg, Germany
E-mail: j.scheele@auronhealthcare.com

Key words: auron mishiel therapy, cervical cancer, quality of life

Abstract. This pilot study of Auron Misheil Therapy (AMT) in women with advanced cervical cancer was an open-label, single arm study to collect initial safety, efficacy, and quality of life data. Fifteen women with stage IIb or IVa cervical cancer were given twice daily intramuscular injections of AMT (insulin, chlorpheniramine and camomile extract) for 3 months. Objective tumor response was evaluated using CT scans and analyzing the data according to the WHO RECIST criteria. Clinical Benefit Response (CBR) was assessed using a composite score comprising Karnovsky performance status, pain intensity and body weight. Safety and tolerability parameters were monitored. Quality of life was evaluated using the European Organization for Research and Treatment of Cancer Core Quality of Life Questionnaire (EORTC C-30). Eight out of 15 patients were rated as clinical responders (CBR) at 12 weeks. One patient had a partial response and 11 stable disease (WHO RECIST criteria). AMT was well tolerated. An initial analysis showed improvement in quality of life (EORTC C-30). Promising response rates, early indications of improved quality of life, and no significant safety issues mean that the second, randomized phase of the trial can be initiated with a longer treatment duration. Patients with advanced cervical cancer showed positive clinical responses to Auron Misheil Therapy. The treatment was well tolerated, with indications of improved quality of life.

Introduction

Auron Misheil Therapy contains human insulin and chlorpheniramine at low therapeutic doses, and aqueous camomile extract. It has been developed for intramuscular use in patients with malignancies and viral infections. It has been given to end-stage cancer patients, on a compassionate use basis, since 1989. From the documentation available from these patients, there was no indication of tumor reduction, but many patients reported an improved quality of life and were more able to perform daily activities, occasionally accompanied by weight gain and pain reduction.

Preclinical toxicological investigations did not raise any safety concerns (Caballero et al, unpublished data). Animal models have shown borderline antitumor activity (1). The cervical cancer cell line DOTC2 was the most sensitive model in a monolayer proliferation assay. In experiments to assess the immuno-modulatory effect of AMT, there was a dose-dependent release of IL-6 and TNF-α from peripheral blood mononuclear cells taken from healthy volunteers, probably indicating activation of monocytes and B-lymphocytes. In another experiment, AMT selectively induced marker expression in resting natural killer cells, monocytes and B-cells, but not T-cells.

However, the proliferation of pre-activated B- and T-cells was inhibited. This pharmacological pattern indicates that AMT might enhance anti-tumor and anti-viral immune responses. AMT caused a super-induction of cytokine production (IL-6, IL-8 and TNF-α) in monocytes that had been prestimulated by lipopolysaccharide (LPS). The effect was higher with LPS and AMT together than with either reagent alone. LPS was used at the maximum stimulatory concentration, which suggests that AMT was triggering a different stimulatory pathway. This could be a useful effect to enhance a weak immune response at sites of local inflammation such as a tumor or an infection. Preclinical toxicological investigations did not raise any safety concerns.

Research on the components of AMT has shown that they each may contribute to its activity in patients with cancer. The active constituents of aqueous camomile extract are flavonoids, polysaccharides and phenolic compounds (2). The main flavonoids in aqueous camomile extract are apigenin, quercetin and luteolin. Flavonoids are known to have anti-
In cancer therapy, chlorpheniramine, an antihistamine, can be used to treat hypersensitivity to cytostatic and cytotoxic drugs (7). Antihistamines can also be used as adjuncts in the treatment of cancer pain, as they have analgesic effects (6). An antiproliferative effect has been shown in vitro in human breast cancer cell lines, probably mediated by an inhibition of ornithine decarboxylase synthesis (9). In mice the growth of Ehrlich carcinoma is inhibited (10). A chemopreventive effect of chlorpheniramine in colon cancer has been discussed after showing an inhibition of colon aberrant crypt formation in rats (11). Chlorpheniramine blocks HERG channels (12), which may impair growth of HERG-bearing tumor cells (13) and may explain the antiproliferative effects of chlorpheniramine seen in some tumor models.

Cancer patients, due to the high energy requirements of tumors, often have changes in their carbohydrate metabolism, characterized by a higher glucose production, glucose intolerance, increased whole-body glucose turnover rate and insulin resistance (14,15). Glucose intolerance is one of the earliest recognized metabolic alterations in patients with cancer (15). Insulin treatment may have two beneficial mechanisms of action. Firstly, it may potentiate the effects of chemotherapeutic agents by increasing the fluidity and permeability of cellular membranes and thus increasing the uptake of these agents into cells (16), and secondly, it may partially reverse tumor-induced cachexia. A randomized clinical trial in patients with multidrug-resistant, metastatic breast cancer showed that combined treatment with insulin and methotrexate resulted in a significantly higher number of patients with stable disease and overall a significantly lower increase in tumor size than with each drug alone (17,18).

Cachexia, characterized by marked weight loss and wasting of skeletal muscle mass and adipose tissue, is an important factor leading to early death of cancer patients (19). In cachectic tumor-bearing rats, lipid and cholesterol metabolic alterations were partially reversed by insulin, resulting in increased body weight, food intake and a prolonged survival time, without stimulating tumor growth (20). Insulin limited the use of endogenous substrates, preserved food intake, and promoted the use of exogenous substrates for energy expenditure. In patients with lymphoma, insulin seemed to counteract the imbalance between glucose uptake of tumor and muscle, circumventing tumor-induced metabolic abnormalities (21). In cachectic cancer patients, insulin together with hypercaloric parenteral nutrition improved skeletal muscle protein synthesis and whole-body protein net balance (18).

A Phase I placebo-controlled, single-dose study carried out in healthy volunteers did not raise any safety concerns, and the pharmacokinetic analysis of insulin and chlorpheniramine produced the expected results (24).
Compounds

Drug administration

score represents a higher quality of life. For the last two questions, a higher

and 30. In the first summary, a higher score represents a

scores for questions 1 to 28 are summarized separately from

functional status (physical, role, cognitive, emotional, and

in which the questions are grouped to form subscores for

weekly during the first month and at 8 and 12 weeks (23).

Organization for Research and Treatment of Cancer Core

clinical non-responder, at least one parameter was negative;

at least one parameter was positive and the others stable;

dered missing.

pain and body weight, the mean of the weekly results was

if there was weight loss of ≥5%, and otherwise stable. For

body weight. The Karnofsky performance status was assessed

(FIGO classification) (n=15)

Tumor staging

No. of patients

IIb 1
IIIa 2
IIIb 4
IVA 7
IVb 1 (after scan)

The CBR is a composite score of the performance status
(Karnofsky performance status), pain intensity and body
weekly during treatment using a 10-cm visual analog scale,

improved from screening, negative if there was a >10%

worsening, and otherwise as stable.

Pain intensity (which excluded local pain at the injection
site) was assessed at screening and daily during treatment
using a 10-cm visual analog scale, with 0 cm representing no

10 and 10 cm the worst possible pain. This parameter was

garded as positive if there was a >25% improvement (the

baseline value had to be ≥2 cm), negative if there was any

worsening, and otherwise as stable. Body weight was assessed

at screening and daily during treatment. This parameter was

garded as positive if there was a weight gain of ≥5%, negative

if there was weight loss of ≥5%, and otherwise stable. For

pain and body weight, the mean of the weekly results was

used; if >3 values were missing, the mean value was consi-

mering.

The CBR was then defined as follows: clinical responder,

at least one parameter was positive and the others stable;

clinical non-responder, at least one parameter was negative;

clinically stable, all 3 parameters stable.

Quality of life was evaluated using the European

Organization for Research and Treatment of Cancer Core

Quality of Life Questionnaire (EORTC C-30) at screening,

weekly during the first month and at 8 and 12 weeks (23).

This is a validated and well established scoring instrument

in which the questions are grouped to form subscores for

functional status (physical, role, cognitive, emotional, and

social), symptomatology (fatigue, pain, nausea and vomiting),

and global health status. In this preliminary analysis, the

scores for questions 1 to 28 are summarized separately from

the two questions on global health and quality of life, 29

and 30. In the first summary, a higher score represents a

lower quality of life. For the last two questions, a higher

score represents a higher quality of life.

Drag administration

Compounds. AMT was provided as a 3 vial formulation by

Auron GmbH (MCS Microcarrier Systems GmbH, Neuss,
Germany). For study 1 (batch-no.) AMT 2003 Cam (5228),

AMT 2003 Vit(+) (5229) and AMT 2003 Ins (5230) was

used. For study 2 AMT 2003 Cam (6091), AMT 2003 Vit(+) (6090),

and AMT zero IL6 (AMT0, 6089) was used. All

components were stored at 4°C.

Preparation of compound. AMT was prepared by mixing
defined amounts of the three individually supplied com-

ponents. For 10 ml of AMT 5 ml AMT 2003 Cam H were

transferred into an empty mixing vial. AMT 2003 Vit(+) (4.75 ml)

and 0.25 ml AMT 2003 Ins were added. All three

components were mixed thoroughly. This procedure was

performed prior to each application.

An AMT-application contains insulin (2.5 IU/ml) and

colorpheniramine (0.813 mg/ml) together with aqueous

chamomile extract. Patients were treated for up to 3 months

with 0.066 ml/kg (up to a maximum volume of 5 ml) AMT

given as an intramuscular injection twice daily. The injections

were given at the study center (the first 2 injections were
given while the patients were hospitalized at the study site),

and very occasionally at a patient's home, by qualified and

trained staff.

Statistical analysis. As this was a pilot study, only descriptive

statistics were used in the analysis. No hypothesis testing

was done.

Immune monitoring. It was well known from preclinical

assessments that AMT has immuno-modulatory activities.

An important aspect of the present trial was thus to assess

whether these properties were also to be seen in patients.

Blood samples were taken at the screening, visit 1 (5-10 days

after start of treatment) and visit 2 (21-42 days after start of

treatment). For logistical reasons (cells have to be analysed

freshly and cannot be frozen), a time window and not a fixed

date was given for the visits to ship as many samples at a
time as possible. The following four analyses were to be

performed with the samples. Serum, interleukin-6 (IL-6);

isolated blood cells: i) stimulation of monocytes and T cells

followed by quantitation of the following cytokines: IL-2,

IL-4, IL-6, IL-10, TNF-α, IFN-γ for T cells (after stimulation

with CD3 and CD28) and IL-18, IL-6, IL-8, IL-10, IL-12p70,

TNF-α for monocytes (after stimulation with LPS); ii) stimulation

of T-cells with CD3/CD28 and measurement of T cell prolifera-

tion after 72 h.

Results

Fifteen women were recruited to and completed the study.

Demographic data are summarized in Table I. All patients

received the full 3 months of treatment. All patients had a

primary tumor; there were no relapers. Only one patient

had received prior chemotherapy; for the other 14 patients

the tumor was either unlikely to respond to chemotherapy or

no therapy was available at the study site. Tumor staging

is shown in Table I. Four patients were enrolled who did

not satisfy the inclusion criterion for tumor staging. Three

patients had less advanced cervical cancer (IIb and IIIa) and

one was originally classified as stage IVa but this changed
to IVb after a scan.

<table>
<thead>
<tr>
<th>Table I. Demographic data and tumor staging.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demographic data (n=15)</td>
</tr>
<tr>
<td>Age (years)</td>
</tr>
<tr>
<td>Height (cm)</td>
</tr>
<tr>
<td>Weight (kg)</td>
</tr>
<tr>
<td>No. of pregnancies</td>
</tr>
<tr>
<td>No. of deliveries</td>
</tr>
<tr>
<td>Tumor staging (FIGO classification) (n=15)</td>
</tr>
<tr>
<td>IIb</td>
</tr>
<tr>
<td>IIIa</td>
</tr>
<tr>
<td>IIIb</td>
</tr>
<tr>
<td>IVA</td>
</tr>
<tr>
<td>IVb</td>
</tr>
</tbody>
</table>
The patients which were staged as IIb and IIIa qualified under the criterion that ‘no therapy was available at the study site’. The assessment of clinical status of the patients at screening showed that the Karnofsky performance status was high at screening, and that there was a range of pain intensity from none (2 patients scored 0) to severe pain (3 patients scored 9).

Safety results. Seven patients experienced 18 adverse events. The most common adverse events were gastrointestinal, with vomiting reported 6 times in 5 patients and diarrhea by 3 patients. Other events reported were urinary tract infection (in 2 patients), malaria, genital infection, high blood pressure, creatine kinase elevation, fever and anorexia. All events except one were considered to be unrelated or unlikely related to the study drug. One patient had moderate hypoglycemia that was considered to be probably related to study drug. The patient recovered the same day. Most of the adverse events were moderate in intensity and none of the events resulted in a change in the dose or discontinuation of study drug.

Local reactions were reported in 14 of the 15 patients enrolled. Most patients had occasional local pain (reported on 1 to 2 days) during the 3 months of treatment, and 2 patients had local swelling. No reddening was reported. Only one patient had more consistent reporting of local pain (patient 107) with pain reported on 31 days. There were no clinically significant findings in the laboratory tests, ECG and vital signs (data not shown).

Table II. Tumor response according to WHO-RECIST criteria.

<table>
<thead>
<tr>
<th>Patients no.</th>
<th>Sum of longest diameter of all target lesions at screening (mm)</th>
<th>Sum of longest diameter of all target lesions after 3 months (mm)</th>
<th>Difference in %</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>104</td>
<td>107</td>
<td>2.9</td>
<td>Progressive</td>
</tr>
<tr>
<td>102</td>
<td>65</td>
<td>63</td>
<td>-3.1</td>
<td>Stable</td>
</tr>
<tr>
<td>103</td>
<td>97</td>
<td>92</td>
<td>-5.2</td>
<td>Stable</td>
</tr>
<tr>
<td>104</td>
<td>119</td>
<td>119</td>
<td>0</td>
<td>Stable</td>
</tr>
<tr>
<td>105</td>
<td>106</td>
<td>95</td>
<td>-10.4</td>
<td>Stable</td>
</tr>
<tr>
<td>106</td>
<td>185</td>
<td>151</td>
<td>-18.4</td>
<td>Stable</td>
</tr>
<tr>
<td>107</td>
<td>60</td>
<td>67</td>
<td>11.7</td>
<td>Stable</td>
</tr>
<tr>
<td>108</td>
<td>113</td>
<td>86</td>
<td>-23.9</td>
<td>Stable</td>
</tr>
<tr>
<td>109</td>
<td>180</td>
<td>210</td>
<td>16.7</td>
<td>Stable</td>
</tr>
<tr>
<td>110</td>
<td>97</td>
<td>100</td>
<td>3.1</td>
<td>Progressive</td>
</tr>
<tr>
<td>111</td>
<td>92</td>
<td>109</td>
<td>18.5</td>
<td>Stable</td>
</tr>
<tr>
<td>112</td>
<td>40</td>
<td>43</td>
<td>7.5</td>
<td>Stable</td>
</tr>
<tr>
<td>113</td>
<td>83.4</td>
<td>50.3</td>
<td>-39.7</td>
<td>Partial response</td>
</tr>
<tr>
<td>114</td>
<td>64</td>
<td>83</td>
<td>29.7</td>
<td>Progressive</td>
</tr>
<tr>
<td>115</td>
<td>70</td>
<td>63</td>
<td>-10</td>
<td>Stable</td>
</tr>
</tbody>
</table>

Figure 1. Waterfall plot for target lesions of the 15 patients according to RECIST criteria.

Table III. SCC tumor marker values.

<table>
<thead>
<tr>
<th>Patients no.</th>
<th>SCC at screening (μg/l)</th>
<th>SCC after 3 months (μg/l)</th>
<th>Tumor response according to WHO-RECIST</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>20.7</td>
<td>62.1</td>
<td>Progressive</td>
</tr>
<tr>
<td>102</td>
<td>11.8</td>
<td>20.5</td>
<td>Stable</td>
</tr>
<tr>
<td>103</td>
<td>29.7</td>
<td>N/A</td>
<td>Stable</td>
</tr>
<tr>
<td>104</td>
<td>59.8</td>
<td>59.9</td>
<td>Stable</td>
</tr>
<tr>
<td>105</td>
<td>228</td>
<td>252</td>
<td>Stable</td>
</tr>
<tr>
<td>106</td>
<td>3.4</td>
<td>4.5</td>
<td>Stable</td>
</tr>
<tr>
<td>107</td>
<td>8.0</td>
<td>7.8</td>
<td>Stable</td>
</tr>
<tr>
<td>108</td>
<td>14.1</td>
<td>22.1</td>
<td>Stable</td>
</tr>
<tr>
<td>109</td>
<td>0.7</td>
<td>0.5</td>
<td>Stable</td>
</tr>
<tr>
<td>110</td>
<td>11.8</td>
<td>13.5</td>
<td>Progressive</td>
</tr>
<tr>
<td>111</td>
<td>7.0</td>
<td>15.3</td>
<td>Stable</td>
</tr>
<tr>
<td>112</td>
<td><0.5</td>
<td><0.5</td>
<td>Stable</td>
</tr>
<tr>
<td>113</td>
<td>2.9</td>
<td>7.6</td>
<td>Partial response</td>
</tr>
<tr>
<td>114</td>
<td>8</td>
<td>17.8</td>
<td>Progressive</td>
</tr>
<tr>
<td>115</td>
<td>10.4</td>
<td>12.3</td>
<td>Stable</td>
</tr>
</tbody>
</table>

N/A, Not available.
Objective tumor response results. One patient (number 113) had a partial tumor response at week 12, with a -40% change from baseline. Three patients had progressive disease (patients 101 and 110 developed new lesions and patient 114 had a 30% increase in the sum of longest diameter of the target lesions), and the remaining 11 patients had stable disease (Table II, Fig. 1).

SCC. SCC ranged between 0.5 and over 200 μg/l at both screening and 12 weeks (Table III). Two patients had higher values compared with the other patients (patient 104 had values of ~60 μg/l and patient 105 had values of between ~230 and 250 μg/l); both patients had stable disease. One patient (101) had an increase from 21 to 62 μg/l and also had progressive disease according to WHO-RECIST, but otherwise there were no marked trends in SCC tumor marker values and there did not appear to be an association between the SCC concentrations and tumor response.

Immune monitoring. The IL-6 serum values from the blood samples are shown in Fig. 2. The main statement to be drawn from these assessments is, that there is no AMT-related systemic IL-6 increase during the treatment, which is an important safety feature, since systemic elevation of IL-6 may be detrimental. These data complement the CRP values, where also no systemic increase was noticed. In summary, it seems that AMT does not result in a non-discriminatory and non-specific activation of immune cells, which would manifest itself in increasing systemic levels of cytokines, e.g. of IL-6. The immuno-modulatory effects of AMT seem to be locally restricted.

On a cellular level, the cytokine release by isolated white blood cells was, however, affected by AMT. A number of different cytokines were assessed and showed changes throughout the treatment. The full data set will be reported in the integrated study report at the end of the trial. For the present interim report, it is sufficient to say that five patients exhibited an increase of their immune parameters overtime, three a decrease and in the other seven patients there were either no significant changes, or they were inconclusive (e.g. an initial increase followed by a decrease).

Table IV. Immune response at visit 2 and clinical benefit response after 4 weeks.

<table>
<thead>
<tr>
<th>Patients no.</th>
<th>Immune response at visit 2</th>
<th>CBR after 4 weeks of treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>Decrease</td>
<td>R</td>
</tr>
<tr>
<td>102</td>
<td>No clear effect</td>
<td>R</td>
</tr>
<tr>
<td>103</td>
<td>Increase</td>
<td>R</td>
</tr>
<tr>
<td>104</td>
<td>No clear effect</td>
<td>ST</td>
</tr>
<tr>
<td>105</td>
<td>No clear effect</td>
<td>R</td>
</tr>
<tr>
<td>106</td>
<td>Increase</td>
<td>NR</td>
</tr>
<tr>
<td>107</td>
<td>No clear effect</td>
<td>NR</td>
</tr>
<tr>
<td>108</td>
<td>No clear effect</td>
<td>NR</td>
</tr>
<tr>
<td>109</td>
<td>Decrease</td>
<td>R</td>
</tr>
<tr>
<td>110</td>
<td>Increase</td>
<td>R</td>
</tr>
<tr>
<td>111</td>
<td>Decrease</td>
<td>NR</td>
</tr>
<tr>
<td>112</td>
<td>Increase</td>
<td>NR</td>
</tr>
<tr>
<td>113</td>
<td>Increase</td>
<td>NR</td>
</tr>
<tr>
<td>114</td>
<td>No clear effect</td>
<td>NR</td>
</tr>
</tbody>
</table>

SCC. SCC ranged between 0.5 and over 200 μg/l at both screening and 12 weeks (Table III). Two patients had higher values compared with the other patients (patient 104 had values of ~60 μg/l and patient 105 had values of between ~230 and 250 μg/l); both patients had stable disease. One patient (101) had an increase from 21 to 62 μg/l and also had progressive disease according to WHO-RECIST, but otherwise there were no marked trends in SCC tumor marker values and there did not appear to be an association between the SCC concentrations and tumor response.

Immune monitoring. The IL-6 serum values from the blood samples are shown in Fig. 2. The main statement to be drawn from these assessments is, that there is no AMT-related systemic IL-6 increase during the treatment, which is an important safety feature, since systemic elevation of IL-6 may be detrimental. These data complement the CRP values, where also no systemic increase was noticed.

In summary, it seems that AMT does not result in a non-discriminatory and non-specific activation of immune cells, which would manifest itself in increasing systemic levels of cytokines, e.g. of IL-6. The immuno-modulatory effects of AMT seem to be locally restricted.

On a cellular level, the cytokine release by isolated white blood cells was, however, affected by AMT. A number of different cytokines were assessed and showed changes throughout the treatment. The full data set will be reported in the integrated study report at the end of the trial. For the present interim report, it is sufficient to say that five patients exhibited an increase of their immune parameters overtime, three a decrease and in the other seven patients there were either no significant changes, or they were inconclusive (e.g. an initial increase followed by a decrease).
CBR and tumor response. The patient who had the partial response (number 113), was also a clinical responder, and the three patients with progressive disease were all clinical non-responders. Of those with stable disease, 64% were clinical responders, and 36% were clinical non-responders (Tables IV and V).

Quality of life results. Mean quality of life scores indicated an improvement in the patients' status (Table VI). For questions 1-28, the mean score decreased (i.e. improved) up to week 3 and then remained stable at 37. For questions 29 and 30, the mean score increased (i.e. improved) up to week 4 and then decreased slightly.

Discussion

Senegal was selected as a study site due to the large number of advanced inoperable cervical cancer patients which cannot be found in more developed countries due to early screening and treatment. Also Senegal has the necessary medical, clinical, regulatory and ethical infrastructure in place to conduct GCP clinical trials.

The safety data showed a good systemic tolerability and no relevant tolerability issues were raised. In spite of the intramuscular route of administration, local reactions at the injection site appeared to be an issue for only 1 patient.

One patient (number 113) had a partial tumor response at week 12, with a -40% change from baseline according to RECIST-criteria. Eleven patients had stable disease with 6 patients having some reduction in tumor which did not qualify as a partial response consistent with RECIST-criteria. Three patients had progressive disease (patients 101 and 110 developed new lesions and patient 114 had a 30% increase in the sum of longest diameter of the target lesions).

The immunomonitoring data indicated, that although AMT did not induce a general systemic inflammatory response, the cytokine release of certain cells was affected in at least some patients. Due to its immuno-modulatory activities AMT may be able to overcome the immunosuppressive activities of tumors and thus allow the immune system to mount an anti-tumor response. Thus, it was of particular interest to assess a potential correlation between the clinical response and the immune response. A correlation was regarded as such if a clinical responder showed an increase of immune parameters or if a clinical non-responder showed a decrease of immune parameters. Table IV shows the results of this analysis. Since the visit 2 took place at 21-42 days after treatment start, in first instance the immune data were compared to the Clinical Benefit Response after 4 weeks.

There was an indication that there is an association between tumor response at 12 weeks and the CBR, as those patients with progressive disease were all clinical non-responders, and the patient with a partial response was a clinical responder. However, this was a very small sample and no statistical tests of association were performed.

The CBR results may indicate that certain patients may be predisposed to respond to AMT, and others not, as those patients with an initial response tended to have a sustained response over the 3 months of the study, and those who did not respond initially remained non-responders. Three patients with advanced cervical cancer are likely to lose weight without treatment, and therefore the body weight stabilization may indicate a positive effect of the study drug.

This pilot study showed that approximately half of the patients with advanced cervical cancer had a clinical benefit response following 3 months of treatment with AMT. Initial analysis of quality of life data also indicated an improvement. It must of course be considered that these results are from a
small sample size, in an open-label, non-blinded study, and the duration of treatment was relatively short. The study has now therefore entered the second phase in which 100 patients will be randomized to a controlled study comparing AMT and best supportive care with best supportive care alone. Fifty patients have been recruited so far.

For the main study the primary end point has been changed to progression free survival and the study is now open randomized comparing AMT and best supportive care with best supportive care alone. The study duration is not restricted to 3 months but patients are allowed to continue AMT until the tumor is progressing or the patients experience any limiting toxicity.

Acknowledgements

We would like to thank the project management team at Focus Clinical Drug Development GmbH, Neuss, Germany, the responsible CRO for this study. We would also like to thank the study team in Dakar, Senegal.

References